3.1: Introduction to Second-Order Linear Equations

A second-order linear differential equation is of the form

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d y}{d x}\right) \quad \text { or } \quad y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{1}
\end{equation*}
$$

(1) can be rearranged as

$$
\begin{equation*}
G\left(x, y, y^{\prime} y^{\prime \prime}\right)=0 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=F(x) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{4}
\end{equation*}
$$

Definition 1.

(a) Anytime that the right-hand side of (3) is identically 0; i.e. $F(x)=0$, the second-order linear equation is called homogeneous.
(b) If the differential equation is not homogeneous it is called nonhomogeneous.

A Typical Application. Linear differential equations frequently appear as mathematical models of mechanical systems and electrical circuits.

When $F(t)=0$ in (5) we get a homogeneous equation which describes the free vibrations of the mass. When $F(t) \neq 0$ in (5) we get a nonhomogeneous equation which describes the forced vibrations of the mass under the influence of an external force $F(t)$.

Theorem 1. (Principle of Superposition for Homogeneous Solutions)
Let y_{1} and y_{2} be two solutions to the homogeneous linear equation (4); i.e. $f(x)=0$. If c_{1} and c_{2} are constants, then the linear combination

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

is also a solution to (4).

Example 1. First check that $y_{1}=\cos x$ and $y_{2}=\sin x$ are solutions to the differential equation

$$
y^{\prime \prime}+y=0 .
$$

Then check that $y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any $c_{1}, c_{2} \in \mathbb{R}$.

Theorem 2. (Existence and Uniqueness for Linear Equations)
Suppose that p, q and f are continuous on the open interval I in (4) with I containing the point a. Then, given any numbers b_{0} and b_{1}, (4) has a unique solution with the initial conditions

$$
y(a)=b_{0} \quad y^{\prime}(a)=b_{1} .
$$

Example 2. We saw in Example 1 that $y=b_{0} \cos x+b_{1} \sin x$ is a solution to

$$
y^{\prime \prime}+y=0 .
$$

Solve for b_{0} and b_{1} given that $y(0)=3$ and $y^{\prime}(0)=-2$.

Exercise 1. Verify that $y_{1}=e^{x}$ and $y_{2}=x e^{x}$ are solutions to the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0 .
$$

Next find the unique solution with the initial conditions $y(0)=3$ and $y^{\prime}(0)=1$.

Definition 1. Two functions defined on an open interval I are said to be linearly independent if neither is a constant multiple of the other. If they are not linearly independent, they are said to be linearly dependent.

General Solutions. Consider (4) when $p(x)$ and $q(x)$ are constant and $f(x)=0$. The resulting homogeneous differential equation is given by

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=0 . \tag{6}
\end{equation*}
$$

Theorem 2 tells us that in this case there are always two linearly independent solutions.

Theorem 3. (Wronskians of Solutions)
Given two solutions to the homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

the Wronskian is defined as

$$
W=\operatorname{det}\left[\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right]=f g^{\prime}-g f^{\prime}
$$

(a) If f and g are linearly independent, then $W(f, g) \equiv 0$.
(b) If f and g are linearly dependent, then $W(f, g) \neq 0$ at each point.

Theorem 4. (General Solutions of Homogeneous Equations)
If y_{1} and y_{2} are linearly independent solutions to the homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

and p and q are continuous on I, then every solution y is of the form

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

for some constants c_{1} and c_{2}.
Example 3. Verify that $y_{1}=e^{2 x}$ and $y_{2}=e^{-2 x}$ are solutions to

$$
y^{\prime \prime}-4 y=0 .
$$

Next verify that $y_{3}=\cosh 2 x$ and $y_{4}=\sinh 4 x$ are also solutions. What does this imply about y_{3} and y_{4} with respect to y_{1} and y_{2} ?

Linear Second-Order Equation with Constant Coefficients.

We return our attention to (6). We replace $y^{(n)}$ with r^{n}; i.e. $y=1, y^{\prime}=r$, $y^{\prime \prime}=r^{2}$, etc. to get the characteristic equation for (6)

$$
\begin{equation*}
r^{2}+p r+q=0 \tag{7}
\end{equation*}
$$

Theorem 5. (Distinct Real Roots)
If the roots r_{1} and r_{2} of the characteristic equation (7) are real and distinct, then

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

is a general solution to (6).

Theorem 6. (Repeated Roots)
If the characteristic equation (7) has repeated (necessarily real) roots $r_{1}=r_{2}$, then

$$
y(x)=\left(c_{1}+c_{2} x\right) e^{r_{1} x}
$$

is a general solution to (6).
Example 4. Find the general solution of

$$
2 y^{\prime \prime}-7 y^{\prime}+3 y=0
$$

Example 5. Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=5, y^{\prime}(0)=-3
$$

Homework. 1-47 (odd)

